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in this paper, normalization procedures for simple rectangular
pulse and sine-wave ground excitations are proposed. Normalized
hysteretic energy spectra are then developed for a simple SDOF
system subjected to these simple excitations, and studied to deter-
mine how the seismic inelastic cyclic response is expressed in
these spectra. The influence of damping on these spectra is also
investigated. It is found that the selected energy normalization
methods, one using maximum ground velocity square and struc-
tural mass as a normalization basis, the other using structural yield
strength and displacement, both produce useful dimensionless
energy values. Then, the applicability of these simple normalization
methods is studied for systems subjected to real earthquakes. Pre-
diction of hysteretic energy using the previously derived pulse
spectra is attempted statistically by considering earthquakes as a
sequence of equivalent rectangular pulses. It is found that the nor-
malized predicted hysteretic energy can be easily obtained for
actual earthquake excitations by: firstly, converting these earth-
quakes into equivalent pulses; secondly, summing the values read
for each pulse from the normalized hysteretic energy spectra con-
structed for simple rectangular pulse or sine wave excitations; and
finally, adjusting the total values by ratio spectra or equations stat-
istically calibrated against a number of real earthquake records.
This simple and rapid procedure aliows direct and reliable predic-
tion of hysteretic energies without the need to resort to complex
and time-consuming step-by-step nonlinear inelastic time-history

analyses.

Keywords: earthquake engineering, prediction, inelastic response,
energy method, hysteretic energy, single-degree-of-freedom, time-
histories, pulse loading, sine wave loading

1. Introduction

Maximum permissible displacement or rotation ductility
has traditionally been used as a criterion to establish inelas-
tic design response spectra for the earthquake-resistant
design of buildings. Unfortunately. because only a resultant
maximum response parameter is taken into account, this
approach lacks a quantifiable consideration of the full seis-
mic inelastic cyclic response other than indirectly by arbi-
trarily set limits on the maximum ductility permissible for
design. As an alternative, it has been suggested' that
energy-based design methods can potentially alleviate the

short-comings of the ductility factor method. However,
much research is still needed before energy methods
become an integrated part of the design process.

In a prior paper?, some fundamental behavioural charac-
teristics of the various terms of the energy balance equation
applicable to earthquake engineering have been studied.
However, in that paper, as in many others previously pub-
lished on that topic, the results were not presented using a
nondimensional analysis or format. While valuable obser-
vations were possible in spite of this dimensional depen-
dency, the parameters of a forcing function or structural
system are generally free to take any value, and should not
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be constrained as was done earlier. Unfortunately, there is
currently no consensus on how this nondimensional nor-
malization should be accomplished. For example, in two
recent publications®# which attempted to quantify the con-
tribution of hysteretic energy to structural damage, the ratio
of hysteretic energy to input energy was proposed as a nor-
malized measure of this damage. Yet, the definition of input
energy adopted by these papers was totally different.
Although, in both cases, the findings are very meaningful
and valuable, the ambiguous definition of the seismic input
energy, i.e. whether it should be defined based on earth-
quake record characteristics as suggested by some
researchers*, by Bertero’s equation' as used by others?, or
by any other strategy, still needs to be clarified. For this
reason, and to generalize the findings of a previous paper,
normalization procedures are sought. This paper uses sim-
ple single-degree-of-freedom (SDOF) systems to investi-
gate how energy demands can be effectively normalized.

Two normalization procedures for simple rectangular
pulse and sine wave excitations are first developed. Since
earthquakes can be thought of as a complex superposition
of pulses and sine wave excitations, it is hoped that the
normalized hysteretic energy spectra for individual rec-
tangular pulses and sine wave excitations can be used to
predict the energy demand of SDOF systems subjected to
real earthquakes. In that direction, the feasibility of the two
simple normalization methods is studied for systems sub-
jected to real earthquakes. The prediction of hysteretic
energy using the previously derived pulse spectra is
attempted statistically by considering earthquakes as a
sequence of equivalent rectangular pulses. Finally, the
possibility of similar prediction by modelling real earth-
quakes as multiple sine wave patterns and series of separate
half sine waves is also discussed. For brevity, the notation
presented in the prior paper will be used, and energy equa-
tions derived there will not be repeated.

2. Energy spectra

To facilitate the design of structures subjected to severe
seismic dynamic excitations. it is desirable to develop
energy spectra which indicate how the peak energy
responses of SDOF systems vary with the characteristics
of the structure for a particular excitation. If various peak
energy responses are plotted as a function of structural per-
iod. strength ratio (n) and damping ratio, the resulting spec-
tra could then be used to determine the energy response of
a particular system to a specific type of excitation. In
addition, various spectra could potentially be combined to
derive a set of design energy spectra which would incorpor-
ate the uncertainties related to the nature of the excitation.

Hence. in order to reveal trends in the various energy
spectra, develop a better understanding of their character-
istics. and investigate how meaningful and stable normaliz-
ation procedures can capture the inelastic seismic behaviour
of simple SDOF structures, the study of energy spectra
under simple dynamic excitation is essential before tackling
the more complex seismic problem. The results of such
analyses are reported in the following sections. There,
input, kinetic, hysteretic and damping normalized energy
spectra are constructed, using the NONSPEC computer pro-
gram?®, for SDOF systems with periods ranging from 0.025
to 5.0's, damping ratios of 0% and 2%, strength ratios, 7,
equal to 0.2, 0.4, 0.6, 0.8, 1.0, 1.02, 1.05, 1.1, 1.2, 1.3, 1.4,
1.6, 1.8 and 2.0, a 1 kg mass, and the same rectangular

pulse excitation used previously. It is noteworthy that the
selected strength ratios are equivalent to those in the
maximum displacement ductility spectra found in the exist-
ing literature®. This enables some verification of results by
comparing the obtained maximum ductility demands.

3. SDOF subjected to rectangular pulse ground
excitation

3.1. Preliminary concepts

Only a few nondimensional energy normalization pro-
cedures have been reported in the existing literature. and
these have mostly used input energy as the normalizing
parameter*, with the difficulties and inconsistencies al-
ready reported above. Moreover, since Uang and Bertero'
energy equations are used in this paper, it should be men-
tioned that they also proposed a first normalization method
based on the idea that the input energy can be converted
to an equivalent velocity by the following relationships

V,=\V2E/M or V,=\2E/M )

for absolute and relative energy methods, respectively. Yet,
in spite of this normalization, V; and V; are not dimen-
sionless and are not generalized in terms of structural
strength or ground excitation parameters.

In order to have a general dimensionless energy measure
recognizing ground excitation parameters, the maximum
ground velocity, which is [igii, dr for the rectangular pulse
excitation, is integrated into a first proposed normalization
equation, expressed as

2E
ENG=_______ (2)

'd 2
MU i, dt)
[}

where E can be any absolute or relative energy, i.e. E;, Ej,
E. E} E. E, or E,, and EV° is that energy normalized by
ground motion parameters corresponding to the input
energy, or more exactly the kinetic energy produced by an
infinitely stiff and strong structure subjected to the same
ground excitation.

A second proposed normalizaiion method is formulated
to integrate the structural strength of an idealized structural
force—displacement model, such as the classical bilinear
force—displacement model, by the expression

EM® = E/(RA,) (3)

where E is any energy (as before), and EM¥ is that energy
normalized by the work needed to yield this SDOF system
under monotonically increasing loading. However, since E;,
E'. E, E}, E, and E, do not have a known direct relation-
ship with the aforementioned structural force~displacement
relationship (also called hysteresis models) and R\A,, it
does not appear logical to use this second method to nor-
malize energies other than E,. That normalization method
has also been used by other researchers’.

Since the denominators in equations (2) and (3) are
always constant with the energy unit of joules (J) for any
given rectangular pulse and structure, both of the normaliz-
ation methods would result in nondimensional energy quan-
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Table 1 Normalized energies calculated for an example with
£=0%, t/T=1.0,1=1.0

Maximum energy

Non- Normalized
normalized
Energy term  {(J) ENG ENR
(a) For M=1kg, i,=1m/s? t;=05s
E; 0.2054 1.643 -
E, 0.1720 1.376 -
E, 0.003229 0.02583 -
E, 0.03343 0.2674 5.279
E; 0.03661 0.2929 -
E, 0.003223 0.02578 -
(b) For M=100 kg, U,=4 m/s?, t,=15s
E; 2915 1.619 -
E, 2438 1.354 -
E, 46.06 0.02559 -
E, 477.0 0.2650 5.230
E’; 523.1 0.2906 -
E. 45.81 0.02545 -

tities, i.e. the normalized energies would be unique and eas-
ily established values.

In order to illustrate the reliability of the above two nor-
malization methods, a numerical example is now provided.
A set of input parameters is arbitrarily selected as shown
in Table 1. Nonlinear step-by-step dynamic time-history
analyses are conducted, the resulting maximum energies are
recorded and the normalized values are calculated. By
applying the two proposed normalization methods, it can
be seen that, for the same values of normalized excitation
duration, t,/T, strength ratio, 1. and damping ratio, £, each
energy term for which the normalization method is deemed
applicable has a unique normalized value as expected. The
small numerical inaccuracies as exhibited in Table I and
quantified in Table 2 are negligible. They are mostly
attributable to the different time steps chosen for the step-
by-step analyses of structures having different periods, and
minor round-off errors. Hence, the proposed normalization
methods are promising, and normalized energy spectra will
be constructed in Section 3.2.

3.2. Normalized energyv spectra

In this section. 13 sets of energy spectra (as shown in Fig-
ures 1-6) are constructed. These figures consist of absolute
and relative kinetic energy, strain energy. hysteretic energy,
damping energy (when applicable) and absolute input
energy spectra derived for undamped and lightly damped

Table 2 Comparison of results from Table 1

(£=2%) SDOF systems. All these energy spectra are con-
structed for SDOF systems subjected to a rectangular pulse
ground excitation. The horizontal axis is normalized as a
function of ,/T and responses are calculated over the range
from 0.1 to 20. The dimensionless t,/T ratio captures the
relative relationship between the duration of the rectangular
pulse and the structural period. For example. when /T is
as small as 0.1, i.e. when the period of structure is 10 times
greater than the pulse duration. the structure is mostly
driven by the initial impulse magnitude as the system has
hardly any time to deflect before the end of the pulse. On
the other hand, when 1,/T is as big as 10, i.e. when the
structural period is 10 times less than the pulse duration,
the structure has sufficient time to reach very large defor-
mation prior to the end of pulse. Pulses embedded with
earthquake ground motion records are generally contained
between these limits. Using a ¢, value of 0.5 s. structural
periods ranging between 0.025 and 5 s have been used to
derive Figures 1-6, and within this range a large number
of structural periods were considered in order to make each
spectrum sufficiently smooth and continuous.

In all figures, ordinates are nondimensional normalized
energy quantities with maximum values of 1.0, except for
the absolute kinetic and input energies for reasons
explained later. Results are presented in a linear-log format,
with the same two exceptions where log-log scales are used
for better readability. Note that for a given earthquake peak
ground acceleration, a bigger dimensionless 1 value implies

- a greater structural strength.

In these spectra, each point represents the maximum
energy response obtained for a given structure (i.e. for a
selected 7, £ and T) and the specific rectangular pulse exci-
tation (i.e. 1,/T and i,). In other words, each individual
value read from these spectra represents the maximum
energy reached during the corresponding extended energy
time history.

By comparing the energy spectra of the same type for
the damped and undamped cases, and by studying individu-
ally the spectra of Figures 1-6, it is found that

e Figures 1-5 for undamped and damped systems are very
similar in shape, the undamped systems always having
the higher energy demand. This effect. of damping has
already been described in the sample case studies of an
earlier paper-.

e The energy balance cannot be checked directly using
only spectra. The sum of the maximum E,, E,, E, and E,
will always be greater than the maximum E; for a given
structure since these maximum values generally occur at
different times throughout the time histories. A simple

Normalized energy

ENG /S ENR
Energy term  From {(a) From (b) Error (%) From (a) From (b) Error (%)
E; 1.643 1.619 15 - - -
E, 1.376 1.354 1.6 - - -
E, 0.02583 0.02559 0.93 - - -
E, 0.2674 0.2650 0.90 5.279 5.230 0.93
E’, 0.2929 0.2906 0.79 - - -

k 0.02578 0.02545 1.3
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relationship linking the maximum energy values does not
exist. However, for all cases analysed, the energy balance
equation was checked to be satisfied throughout the
time histories.
e The individual kinetic, strain, hysteretic and damping
energies are found to be more significant and meaningful
than the input energy spectra.
e The absolute kinetic energy spectra (Figure 1), strain
energy spectra (Figure 2) and relative kinetic energy
spectra (Figure 5) have similar shapes, although the
absolute energy spectra always have greater values,”as
expected. In these spectra, the lower energies are
observed to occur for the larger 1,/T and lower 7 values,
except in the relative kinetic energy spectra where EN°
is sometimes larger for low 7 values, such as 0.2, 0.4,
0.6 and 0.8. This can be explained as follows, it being
understood that comparing results normalized using equ-
ation (2) is conceptually equivalent to comparing Sys-
_ tems having identical mass and ground excitation para-
meters (i.e. same i, and ,). For a given 7, a larger 1,/T

Normalized absolute kinetic energy spectra for rectangular pulse ground excitation: (a) undamped case (£=0%); (b)
damped case (£=2%)

results in a stiffer system. Hence, for a higher initial stiff-
ness, displacement is less for a given force loading the
structure in the elastic range; based on the definitions of
the strain and kinetic energies, a smaller displacement
would also cause a smaller velocity, which in turn leads
to smaller strain and kinetic energies. Alternatively, from
a different perspective, for a given #,/T, a larger value
corresponds to a stronger system. Hence, for the same
initial stiffness in the force—displacement relationship, R,
is larger, with potential to lead to higher strain or kinetic
energy demands. This relationship between energy and
period for fixed parameters of ground excitation, when
1/T increases, could also be demonstrated analytically
using the equations presented in the first paper® (i.e.
equations 6, 8, 10, 13-15 and 17 of that paper). As for
the exceptions in the relative kinetic energy spectra,
which occur for structures with 1 of 0.2 to 0.8, in the
long t,/T range, the corresponding SDOF systems sub-
jected to rectangular pulse excitation are so substantially
under-strength, that their velocity keeps increasing
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Figure 2 Normalized strain energy spectra for rectangular pulse ground excitation: (ai undamped case {{=0%), (b} damped case

(£=2%)

throughout the excitation. much more rapidly than if the
system remained elastic. due to the low (or zero) post-
yield stiffness. Consequently. so does the maximum rela-
tive kinetic energy. However, the recoverable strain
energy will not change since the yield displacement
remains the same. All the energy due to displacement
beyond the yield point becomes irrecoverable hyster-
etic energy.

e The damping and relative kinetic energies are closely
related, as was demonstrated elsewhere”. Therefore, the
total loss of relative kinetic energy due to damping
becomes the maximum damping energy. This relation-
ship also explains the peculiar shape of the damping
energy spectra (Figure 6) in the low m and large 1,/T
range (i.e. under-strength systems yielding at progress-
ively larger velocities, as explained above for the relative
kinetic energy spectra). At this point, it is worth recalling
that simple viscous (velocity proportional) damping has
traditionally been introduced in the dynamic equations of
motion as a convenient and sufficiently accurate model
for most elastic analyses even though the actual energy-

loss mechanisms in real structures are likely to be more
complex®. Thus, as a consequence of how energy
methods equations are constructed, damping energy will
be calculated as dissipating simultaneously to hysteretic
energy when inelastic response occurs. Although this
would be of significance mostly for very weak structural
systems, whether this corresponds realistically to the pro-
per physical behaviour of such structures remains to be
determined.

Although not demonstrated here, it is worth mentioning that
the shapes of normalized and non-normalized spectra are
similar’, which may be considered by some to be an advan-
tage of this normalization method. Moreover, the normaliz-
ation factors (i.e. the structural mass and maximum ground
velocity square) can be interpreted physically as the input
energy corresponding to an infinitely rigid mass resting on
the ground. For that infinitely rigid mass, assuming the fric-
tional resistance between that mass and the ground is not
exceeded, the only energy that can possibly exist to balance
the input energy is the kinetic energy, regardless of whether
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Figure 3 Normalized hysteretic energy spectra for rectangular pulse ground excitation: {a) undamped case (£=0%); (b) damped

case (£=2%)

relative or absolute energy is used since relative and total
velocities are identical in this case. This energy somewhat
provides a measure of the raw energy potential of a given
ground excitation as felt at one geographic location.

For this reason. the normalized maximum strain, hyster-
etic. damping or relative kinetic energy amount demanded
by SDOF systems using the first method cannot exceed 1.0,
since these energies are normalized by a maximum input
energy. Figures 2. 3. 5 and 6 confirm this. However, the
upper bound on normalized absolute kinetic and input ener-
gies (Figures | and 4) is 4.0, which is actually reached by
undamped elastic structural systems having very low t,/T
values. This result can also be easily demonstrated, usthg
energy equations presented in the prior paper-, classical
equations of structural dynamics® for SDOF systems sub-
jected to short pulse excitation, and impulse momentum
relationships. For that limit case, the relative and ground
motion velocities are both equal to the applied impulse div-
ided by the mass, and added together and squared in the
absolute kinetic energy equation (see definition in the earl-
jer paper’); when divided by a square function of the
impulse when normalized as per equation (2), all terms can-

cel except a constant equal to 4.0. Moreover, in undamped
elastic systems, as Kinetic and strain energies alternate?, the
maximum absolute input energy is identical to the absolute
kinetic energy.

At the other extreme, it can be observed and rationalized
that for increasingly stiff SDOF systems (i.e. with decreas-
ing periods T, and correspondingly increasing t,/T), the
absolute kinetic and input energies (EY6 and E\°) should
converge toward a value of one, as seen in Figures I and
4, as relative velocities become progressively insignificant
compared to ground velocities.

Figures 7a and 7b are the normalized hysteretic energy
spectra using the second normalization method. As men-
tioned earlier, this method is only logical for the hysteretic
energy. Since different structures have different R, and A,
values, the resultant normalized energy spectra from this
method differ in shape from the non-normalized ones. Sys-
tems with smaller m and larger 1,/T have smaller R, and
A,, resulting in relatively large normalized values. It can
also be seen that the trends expressed in Figures 7 and 8
can easily be understood: firstly, the structural hysteretic
energy demand will increase for systems having progress-
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Figure 4 Normalized absolute input energy spectra for rectangular pulse ground excitation: {a) undamped case (£ =0%); (b) damped

case (£=2%)

ively lower m value (i.e. lower normalized strength ratio)
for a given value of normalized period; secondly, for a
given 7, systems with shorter periods will have higher nor-
malized hysteretic energy demand because of their corres-
pondingly smaller yield displacements, and; finally, when
7 equals 2.0, E5® will always be 0, as expected for a pulse
ground excitation.

4. SDOF subjected to sine-wave ground
excitation s

4.1. Preliminary concept

As per the same logic described above for rectangular pulse
excitations, normalized spectra are also needed for sine-
wave ground excitations. The two normalization methods
previously proposed and used are retained here. However,
before constructing the normalized spectra, it must be
ensured that these normalization procedures still work well
for the case at hand, i.c. that the nommalized spectra are

generally applicable irrespectively of which parameter(s)
change(s).

For the first normalization method (equation (2)), the
consideration of structural mass in the method is not affec-
ted by the sine wave nature of the ground motion, but the
definition of maximum ground velocity used for rectangular
pulse excitation is inadequate for sine wave loading and
needs to be improved. By substituting the appropriate
maximum sine-wave velocity of i, J/27 into equation
(2), a first normalization method for harmonic sine-wave
excitation could be proposed as

2E '
ENG [ (4)

l?l'g,,mT 2
M( 2m )

but since the input and the hysteretic energies are cumulat-
ive and increasing at each yield excursion?, equation (4) is
not adequate either, except for kinetic and strain energies.
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Figure 7 Normalized hysteretic energy spectra for rectangular puise ground excitation: (a) undamped case (£=0%); (b} damped
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To normalize cumulative unbounded and periodic energies
here, the number of cycles of the sine wave loading must
be taken into account. Thus, a normalized energy per input
cycle is proposed as

2E
EMO = ———— (5)

agmluT ?
ey

where N is the number of cycles of a sine wave.
By the same logic, the form of the second proposed nor-

malization method becomes
s

EhNR = Eh/(NR\A\) (6)

Beyond this periodicity consideration, the normalization
parameters are unchanged and their rationalization need not
be repeated here. However, to construct the normalized
energy spectra, the dimensionless quantity, B, (defined as
equal to the ratio of the natural to the applied load vibration
periods, 7/T) is a more meaningful representation of nor-
malized period for abscissa, and is used here.

In order to illustrate the reliability of the above proposed
normalization formulae, a numerical example is provided.
For a set of input parameters, arbitrarily selected and dis-
played in Table 3, the resultant maximum energies and nor-
malized values are calculated and tabulated there. By com-
paring EVS or EMR of the two cases, it can be seen that, for
the same normalized excitation period, B, strength ratio,
7, and damping ratio, £, each energy term for which the
normalization method is deemed applicable has a unique
normalized value as expected. Small numerical errors as
exhibited in Table 4 are negligible for the reasons discussed
earlier. Hence the proposed normalization procedures are
effective, and the corresponding normalized energy spectra
will be constructed in Section 4.2.

4.2. Normalized hysteretic energy spectra

General hysteretic energy spectra are constructed for sine
wave excitations using the two proposed normalization
methods. It is hoped these spectra, together with the nor-
malized hysteretic energy spectra for rectangular pulse
excitation, will be useful to predict the hysteretic energy
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demand of simple systems subjected to real earthquake
excitations.

Although it is possible to construct spectra for all the
energy terms, as in Section 4.1, it is neither desirable nor
practical to do so. The meaning and significance of each
energy term has already been established above and else-
where?. Kinetic and strain energies are not dissipative and
are not useful in damage predictions. Moreover. while
damping energy is dissipative, the hysteretic energy spectra
constructed for various damping ratios indirectly accounts
for the presence of this damping. Thus, the availability of
hysteretic energy spectra (derived for given damping ratios)
is apparently sufficient for damage predictions, and the rest
of this paper will accordingly concentrate on hysteretic
energy.

4.2.1. Normalization method |
Figures 8a and 8b are the resulting normalized hysteretic
energy spectra produced using

!

NM (agmax-i-)z
2

(N

for damping ratios of 0% and 2%, respectively. Again,
using this method, the shape of the figures closely corres-
ponds to the non-normalized hysteretic energy spectra (not
presented here), as the denominator of equation (7) is con-
stant for a given input. It is observed that the undamped
normalized hysteretic energies are slightly bigger than
those for systems with a 2% damping ratio.

Again, any point on a spectra corresponds ‘to the
maximum value obtained throughout a hysteretic energy
time history, which itself is related to a particular physical
displacement time history. This perspective helps explain
why in both Figures 8a and 8b, for big 7 values, EXC varies
much as a function of B, while for small 7, it does not. In
other words, for a structure nearing resonant response, if the
potential to develop a strong elastic response exists prior
to yielding, the structure can be visualized as entering the
inelastic range with a larger velocity (i.e. a larger kinetic
energy) at each cycle, which in tumn requires more hyster-
etic energy to be stopped. Stronger structures (large 1) pos-
sess more of such an elastic displacement response,
whereas it can hardly develop in weak systems (small 7).
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Table3 Normalized energies calculated as an example with
£=0%, =075, 11=2.0

Maximum energy

Non- Normalized
normalized
Energy term  (J) ENG ENR

(a) For M=1Kg, Upmae= 1M/s?, T=15s, T=20s, t,=20s

E; 5.304 10.47 -
E, 0.6061 11.96 -
E, 0.1162 2.294 -
E. 4.958 9.787 2.175
E; 5.086 10.04 -
L 0.1836 3.624 -
{b) For M=100 kg, Ugmaex = 5 M/s%, T=0.45s, T=0.6s, t,=9s
E 1811 10.59 -
E, 136.5 11.98 -
E, 26.12 2.292 -
E, 1731 10.12 2.250
E, 1762 10.31 -
E. 41.58 3.648 -

E, E', and E, must consider the number of cycles of sine wave
loading in their normalization

4.2.2. Normalization method 2

Figures 9a and 9b are the normalized hysteretic energy
spectra produced using

ENR = E,/(NRA,) (8)

for damping ratios of 0% and 2%, respectively. Since this
normalization method is related to the yield strength and
displacement of the system, it is felt that these normalized
spectra can reflect the structural energy demand in a more
straightforward and rational manner. As revealed by both
figures, systems with higher n value have lower hysteretic
energy demands, i.e. stronger structures yield less and
consequently have a higher ability to resist cyclic
dynamic excitations.

When B < 0.8, systems start to respond as if subjected
to pulse excitations, since the period of the sine wave is
becoming relatively larger than the structural period and
each cycle of loading could be considered as a pulse
impacting the system. Thus for one cycle of excitation and
a given 7 value, smaller B results in greater energy demand.
This conversion to pulse-driven response can be further
emphasized by replotting Figure 9a using instead nENC as
a new normalized energy expression in the ordinate, and
superposing on these results (over the range B < 0.8) the

Table 4 Comparison of results from Table 3

corresponding values obtained for a double rectangular
pulse and one full sine pulse ground excitation, as shown
in Figure 10. Results between the pulses and continuous
sine-wave ground excitations obviously cannot be identical,
due to different initial displacement and velocity conditions
at the start of each load reversal, but they confirm the
rationale for the observed trend in behaviour at low B. It
is also noteworthy that for B> 0.8. energy results nor-
malized as per nEYC for SDOF subjected to continuous
sine-wave ground excitation become superposed and vary
almost linearly as a function of B.

5. SDOF systems subjected to real earthquakes

The previous sections have quantitatively expressed,
through spectra, how hysteretic energy can be a good indi-
cator of the structural nonlinear cyclic cumulative behav-
iour of SDOF systems subjected to simple pulse and sine
wave ground excitations. It remains to investigate how
these spectra can be used to predict hysteretic energy
demand under real earthquake excitation. Five major earth-
quakes will be considered to obtain the statistical infor-
mation needed for reliable prediction spectra. They are the
Imperial Valley El Centro Earthquake of 18 May 1940
(SOOE component), San Fernando Pacoima Dam Earth-
quake of 9 February 1971 (S16E component), Helena Mon-
tana Earthquake of 31 October 1935 (S00W component),
Western Washington Olympia Earthquake of 13 April 1949
(NO4W component), and the Parkfield California Earth-
quake of 27 June 1966 (N65SE component).

5.1. Extension of proposed normalization methods to
real earthquakes

Two normalization methods have been proposed in Sec-
tions 3 and 4. The first one uses the maximum ground velo-
city and structural mass in its normalization equation,
whereas the second one considers structural yield strength
and displacement. Both performed very well for the simple
rectangular pulse and sine wave excitations. For real earth-
quake excitations, it is difficult to directly normalize the
hysteretic energy against a unique value of maximum
ground velocity as per the first method; the highly random
nature of any given earthquake excitation makes com-
pliance to such a rigid framework difficult. A number of
different normalization approaches built from extensions or
modification of this first normalization method have been
considered, with the constraint that the normalizing para-
meter had to be an expression of energy, but none proved
to be dominantly superior to the one adopted in the remain-
der of this work.

Normalized energy

ENG 4 ENR

Energy term  From {a) From (b} Error (%) From (a) From (b) Error (%)
E; 10.59 10.47 1.1 - - -
E. 11.98 11.96 0.17 - - -
E, 2.292 2.294 0.087 - - -
E, 10.21 9.787 3.2 2.175 2.250 34
E; 10.31 10.04 2.6 - - -

X 3.624 3.648 0.66 - - -
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Contrary to the above, the second proposed normaliz-
ation method is easily applicable with real earthquake exci-
tations, as the yield strength, R,, and yield displacement,
A, of any structure is independent of the nature of ground
excitation. However, it is used only with the hysteretic
energy spectra for the reasons mentioned earlier. Hence.
only this second normalization method is used thereafter.

For use in a design procedure, normalized hysteretic
energy spectra could obviously be directly constructed for
a group of earthquakes. This operation is computer inten-
sive, but rational and theoretically correct. However, it
would be advantageous if hysteretic energy could be
directly predicted from spectra derived from simpler forms
of ground excitation. This is investigated below.

5.2.  Prediction of seismic hysteretic energy by
equivalent rectangular pulses method

In this section, a procedure is developed to predict seismic
hysteretic energy from spectra derived for rectangular pulse
excitations. For this purpose. any earthquake must first be
modelled as a sequence of rectangular pulses. For a given
earthquake's ground acceleration time history record, each
of the numerous crossings of the zero axis delimitates the
boundaries of a positive or negative area. Any such single
positive or negative area can be considered as a pulse with
a maximum acceleration value and a corresponding area.
In order to change such an irregularly shaped pulse to an
equivalent rectangular pulse of the same maximum acceler-
ation and area, an equivalent time duration. r,, must be
defined. By repeating the same procedure to every area thus
defined by two consecutive crossings of the time axis of
the earthquake acceleration time history diagram. an actual
earthquake record can be replaced by a sequence of discon-
tinuous rectangular pulses. The resulting distribution of
such equivalent pulses for a particular earthquake is shown
in Figure 11.

Computer programs were writien to make the above pro-
cedure simple. fast and more accurate’. One simple pro-
gram converts the raw earthquake acceleration data into a
sequence of equivalent rectangular pulses defined by their
amplitudes and equivalent durations, and a second program
calculates the cumulative normalized hysteretic energy.
Due to their extreme simplicity. both programs can be

executed in a few seconds. For the later program, infor-
mation on the previously constructed normalized hysteretic
energy spectra for rectangular pulse excitation is contained
in a matrix, and the corresponding hysteretic energy for a
given equivalent pulse can be directly obtained by double
interpolation. The resulting sum of these portions of nor-
malized hysteretic energies calculated by the computer pro-
gram is actually a raw predicted normalized hysteretic
energy for a given earthquake. and noted as E}*". This E3¥’
is then compared with the true normalized hysteretic energy
noted as E}R directly and separately calculated for the earth-
quake itself using NONSPEC. Finally. the ratio of predicted
to actual hysteretic energy can be determined for an ensem-
ble of earthquakes.

Statistical results are generated for the five selected
earthquakes. For each earthquake, the true normalized hys-
teretic energies. EXX, and corresponding predicted values,
EM®' are calculated and compared for various undamped
SDOF systems over ten structural periods (0.1s, 0.2s,
03s,04s, 06s,0.8s, 1.0s. 1.25s, 1.5s and 2.0s) and
six structural strength ratios (0.4, 0.6. 0.8, 1.0. 1.2 and 1.4).
Here, only the 0% damping ratio case is considered, the
principle would be the same for damped systems.

However, the obtained predicted results are often not
close to the actual earthquake ones. This discrepancy is
understandable because the equivalent rectangular pulse
method assumes a zero initial velocity and displacement at
the beginning of every pulse, which is not the case during
a real earthquake excitation. Nonetheless, a certain trend
was discovered to exist for the ratio of ER’ to Eff as a
function of different structural periods and strength ratios.

The simplest way to establish the relationship between
the predicted and actual normalized hysteretic energy
results is to construct their ratio spectra. To immediately
establish the general trend for an average of many earth-
quakes, instead of building one set of spectra for each earth-
quake, the mean curves for five earthquakes are constructed
as a function of various structural periods and strength
ratios, as shown in Figure 12a. For completeness, the mean
plus one standard deviation curves are also constructed in
Figure 12b. 1t is noteworthy that the mean minus one stan-
dard deviation curves could be just as easily derived. It
can be observed from Figure 12 that in most circumstances
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Figure 11 Distribution of equivalent pulses of El Centro earthquake
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ratic spectra

except for systems with very short periods and low 7
values, the ratio of ENF’'/EM® is less than 1, which implies
that the predicted results ‘under-predict’ the normalized
hysteretic energy demand. Therefore. an effective predic-
tion method must take into account and correct this
deficiency.

Assuming that the five earthquake records used to derive
Figure 12 are representative earthquakes for selected
regions of the world, empirical equations for the E)*'/E}F
ratio can be derived to allow direct and accurate prediction
of hysteretic energy. Using exponential curves, which
appear to adequately represent the trends in data, best curve
fitting is done based on linear regression analysis. The
resulting equations for the six strength ratios are derived in
Table 5. The accuracy of the resulting curve fitting for Fig-
ure 12 is quite acceptable, as illustrated in Figure 13 for
an arbitrarily selected parameter-set. Interpolation between
the curves for various 7 can also be performed if necessary.

To more explicitly demonstrate how the aforementioned
procedure works to predict the hysteretic energy demand
for a specific SDOF system, the whole procedure is
reviewed for a SDOF system with period of 0.4s and
strength ratio of 0.6 subjected to the El Centro earthquake.
Using the computer program to automatically convert the

Table 5 Best-fit equations for curves in Figures 12a and 12b

7 value Mean ENF'/ENR

Mean plus standard
deviation
X IEN

0.4

0.6

0.8

1.0

1.2

1.4

N EN = 1.29¢71367
(12)

ENTIENR = 1162777
(14)

ENRENS = 19970577
(16)

ENRJENF = 2.23e70847
(18)

N7 IENR = 1.81e7°77
(20)

YR EN = 1.36€70467
(22)

ENT/ENR = 13771077
(5.2)

ENFENR = 1.35¢7 847
(15)

EN7IENR = 1.41671747
(17)

ENTENR = 2.67€5%7
(19)

ENIENR = 2126557
(21)

N7 IEYR = 1.356°5%7
(23)
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earthquake into equivalent rectangular pulses, the predicted
normalized hysteretic energy obtained is 16.55. This value
is only a preliminary predicted value of E}*’ and needs to
be revised to obtain the final result. According to Figure
12, the mean ratio of EX®’ to E}¥ is about 0.487, while the
mean plus one standard deviation value from either Figure
12b or equation (15) is 0.647. Thus, for a one standard
deviation of uncertainty, the true predicted normalized hys-
teretic energy demand of such a structure varies between
25.58 (16.55 over 0.647) and 50.61 (16.55 over 0.327),
with an average value of 33.98 (16.55 over 0.487). To
obtain the predicted non-normalized hysteretic energy
itself, the normalized value needs to be multiplied by the
structural yielding strength and displacement. Assuming the
mass of the SDOF system in this example to be 1000 kg,
its yield strength is then

R, = 1 X Mg, = 0.6 X 1000 x 3.417 = 2050.2 (N)
9)

since the maximum ground acceleration, i, ma. 1 3.417 m/s
for this earthquake. The corresponding yield displacement
is

A = R, _ R, _ 2050.2
Sk (2—71')7 M (37—7) x 1000
T 04
=832 % 107? (m) (10)

Thus, the predicted hysteretic energy demand for this
SDOF system is

E,=EY® (RA,) =580 (J) (11)

where EMR' is taken as its mean value, i.e. 33.98.

This predicted value of E; can be easily checked using
the NONSPEC computer program for this same SDOF sys-
tem and the El Centro earthquake. The resulting exact hys-
teretic energy demand calculated is 555.4 J, an error of only
about 4.4%.

This example illustrates that the concept and procedure
of the equivalent rectangular pulses method is quite promis-
ing for predicting the hysteretic energy demand of a SDOF

system. Eventually, more earthquake records. instead of
just the five earthquakes considered in this research. should
be taken into account to make the ratio spectra more
reliable. Moreover, earthquakes with frequency character-
istics specific to certain geographic regions, as suggested
by many researchers®!®-'2 could be considered to further
improve the prediction of normalized hysteretic energy.

5.3, Prediction of seismic hysteretic energy using sine-
wave excitation spectra

Real earthquakes could also be modelled as a sequence of
equivalent sine pulses. The procedure is identical to that
previously described with the difference that two adjacent
zero crossing points on the time axis of an earthquake
ground motion record define a sine pulse of the same
maximum acceleration and duration as the actual irregular
pulse from the earthquake record. Information on the pre-
viously constructed normalized hysteretic energy spectra
for sine wave excitation must also be used instead. inter-
preting each sine pulse as a half-cycle duration sine wave
on that spectra. A partial mean ratio spectra of EW® 10 ENF
constructed over a limited range of B for the same five
earthquakes revealed trends similar to the ratio spectra
obtained for the rectangular pulse simulation®.

Finally, attempts have also been made to predict seismic
hysteretic energy spectra by trying to relate the Fourier
spectra of an actual earthquake to the previously derived
normalized spectra for sine wave excitation. Conceptually,
an earthquake acceleration record can be perceived as a
large number of simultancously applied sine or cosine
waves having different fundamental periods. The Fourier
spectra of the input excitation can be obtained by fast Four-
ier transform. Unfortunately. as might be expected, individ-
ual harmonics alone cannot induce inelastic response due
to their small amplitudes. particularly since the amplitude
of a continuous Fourier spectra is a function of the number
of digitization points. Although it was attempted to remedy
this shortcoming by lumping values (areas) over a certain
range of fundamental periods, A7, for many practical
values of AT considered, the amplitudes of the resulting
pulses were still not sufficiently intense to produce any
inelastic response. Hence, attempts to use the Fourier spec-
tra along the lines developed in this paper have so far,
been inconclusive.
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6. Conclusions

In this paper, normalized energy spectra have been con-
structed for SDOF systems subjected to rectangular pulse
and sine-wave ground excitations, using two approaches to
energy normalization. A methodology has also been formu-
lated to predict the hysteretic energy demands of elastoper-
fectly plastic SDOF systems subjected to real earthquakes
based on the availability of normalized spectra for simpler
excitations. Some important conclusions of this research
project are summarized below.

The selected energy normalization methods, one using
maximum ground velocity square and structural mass as a
normalization basis, the other structural yield strength and
displacement, both produce useful dimensionless energy
values; they are also very easily determined for simple rec-
tangular pulse and sine wave excitations.

Normalized predicted hysteretic energy can easily be
obtained for actual earthquakes excitations by: firstly, con-
verting these earthquakes into equivalent pulses: secondly,
summing the values read for each pulse from the nor-
malized hysteretic energy spectra constructed for simple
rectangular pulse or sine wave excitations: and finally,
adjusting the total values by ratio spectra or equations stat-
istically calibrated against a number of real earthquake rec-
ords. The procedure is simple, rapid. and allows direct and
reliable prediction of hysteretic energies without the need
to resort to complex and time consuming step-by-step non-
linear inelastic time-history analyses.

Future research on this topic is needed to extend the
applicability of the findings and to improve the fundamental
understanding of the behaviour of the respective energy
terms during earthquake excitations. In particular, such
research should include: firstly. a study of the frequency
content of the earthquakes anticipated in various regions of
the world. to determine the range of the normalized hyster-
etic spectra for pulse and sine wave excitations necessary
for use in the above prediction method. Secondly. consider-
ation of other force—displacement structural models, i.e.
structural systems having hysteretic behaviour more com-
plex than the bilinear elastoperfectly plastic model used
herein. Thirdly. construction of more reliable or geographi-
cally dependent ratio spectra by the consideration of more

earthquake records. And finally, development of energy-

"based seismic design methods for the evaluation and design

of seismic resistance of existing and new structures.
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